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Abstract. Transition energies of the superheavy element lawrencium, including the ionization potential,
excitation energies and electron affinities, are calculated by the intermediate Hamiltonian coupled cluster
method. A large basis set (37s31p26d21f16g11h6i) is used, as well as an extensive P space (6s5p4d2f1g).
The outer 43 electrons are correlated. Accuracy is monitored by applying the same approach to lutetium,
the lighter homologue of Lr, and comparing with experimentally known energies. QED corrections are
included. The main goal is to predict excitation energies, in anticipation of planned spectroscopy of Lr.
The ground state of Lr is 7s27p 2P1/2, unlike the 5d6s2 2D3/2 of Lu. Predicted Lr excitations with large
transition moments in the prime range for the planned experiment, 20 000–30 000 cm−1, are 7p → 8s at
20 100 cm−1 and 7p → 7d at 28 100 cm−1. The average absolute error of 20 excitation energies of Lu is
423 cm −1, and the error limits for Lr are put at 700 cm−1. The two electron affinities measured recently
for Lu are reproduced within 55 cm−1, and a third bound state of Lu− is predicted.

PACS. 32.30.-r Atomic spectra – 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and
molecules – 31.15.Dv Coupled-cluster theory

1 Introduction

The spectroscopic study of superheavy atoms (Z � 100)
presents a severe challenge to the experimentalist. While
certain chemical properties of these elements may be elu-
cidated in single-atom experiments [1,2], spectra can be
measured only in sizable samples. The first such study of
a superheavy atom [3] used 2.7 × 1010 atoms of 255Fm
with a half life of 20.1 h, long enough to make possi-
ble shipment of the sample from Oak Ridge, Tennessee,
where it was produced, to the Max-Planck-Institut für
Kernphysik in Heidelberg, where the spectrum was taken.
Spectroscopic measurements are currently planned for No
and Lr, which have shorter lifetimes, by a collaboration
based at GSI [4], with production and measurement tak-
ing place in the same institute. Such measurements must
be accompanied by high-level calculations. The low pro-
duction rates of the atoms in nuclear fusion reactions, be-
low 10 per second, and short lifetimes, on the order of
seconds, necessitate reliable prediction of the position of
transition lines, to avoid the need for broad wavelength
scans. In addition, theoretical studies are crucial for iden-
tifying the lines. Indeed, the Fm measurements [3] were ac-
companied and guided by multiconfiguration Dirac-Fock
(MCDF) calculations. The purpose of the present work
is to provide sufficiently accurate transition energies for
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the lawrencium atom. The accuracy of the prediction is
estimated by applying the same method to lutetium, the
lighter homologue of Lr, where experimental transition en-
ergies are available.

The coupled-cluster (CC) approach is probably the
most powerful tool for high quality atomic and molecular
calculations [5]. The Fock-space coupled-cluster (FSCC)
scheme, a multireference variant of the CC method, has
provided the most accurate transition energies for many
atomic and molecular systems [6]. It takes account of non-
dynamic electron correlation by the multiconfigurational
approach, including the important electron configurations
in the model (P ) space, and at the same time provides
a good description of dynamic correlation by incorporat-
ing many millions of excitations to Q space determinants.
FSCC results are usually more accurate than MCDF val-
ues, since the latter method involves far fewer excitations,
thus incorporating a smaller segment of Q and giving less
extensive description of dynamic correlation. Thus, the
FSCC error [7] for energy differences in the f2 manifold of
Pr3+ is four times smaller than that of MCDF [8]. Another
example is the electron affinity (EA) of Tl, measured re-
cently [9]. Before the experimental value was known, mul-
tireference configuration interaction [10] and MCDF [11]
calculations predicted an EA of 0.27–0.29 eV, whereas
FSCC [12] gave a significantly higher 0.40 eV. The mea-
sured 0.377(13) eV is in much better agreement with the
latter value.
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The FSCC approach has been augmented and im-
proved by the development of intermediate Hamiltonian
Fock-space coupled cluster (IHFSCC) methods [13–16].
These make possible the use of much larger and more
flexible P spaces without running into intruder states
and divergence, thereby increasing the accuracy obtained
[17–21]. Pilot applications with the extrapolated interme-
diate Hamiltonian approach [22,23] reproduced the known
ionization potentials and electron affinities of the alkali
atoms within 1 meV.

The available experimental information on the levels
of Lu appears in the compendium of Martin et al. [24].
A recent addition is the electron affinity of Lu, measured
by Davis and Thompson [25]. Desclaux and Fricke [26],
and, more recently, Zou and Fischer [27], calculated some
transition energies of Lu and Lr using the MCDF ap-
proach. Other methods used include density functional
theory (DFT) by Vosko et al. [28] and pseudopotential
and DFT studies by Liu et al. [29]. The FSCC method
was applied to many levels of the atoms [30]. Here we
apply the intermediate Hamiltonian coupled cluster ap-
proach to the electronic spectra of the Lu and Lr atoms,
compare the results to experimental values for Lu, and
predict transition energies for lawrencium.

2 Method

The intermediate Hamiltonian (IH) approach was origi-
nally introduced by Malrieu [31] in the framework of de-
generate perturbation theory. The model space P is par-
titioned into two parts, the main Pm and intermediate
Pi, and an intermediate Hamiltonian HI in P is derived,
the eigenvalues of which give good approximation to the
eigenvalues of H dominated by main model space compo-
nents. The other eigenvalues, dominated by the intermedi-
ate (Pi) components, are arbitrary (in practice, the latter
are also well reproduced in many cases). This flexibility
was exploited by Malrieu to eliminate the influence of in-
truders on the convergence of the degenerate many-body
perturbation theory expansion up to 3rd order. Conditions
on problematic Pi → Q transitions, associated with small
energy denominators and convergence difficulties, were de-
rived, leading to equations similar to but not identical with
the Bloch equation. We have derived several intermediate
Hamiltonian approaches applicable in any order, includ-
ing the all-order coupled-cluster method [13,15,23]. Our
first IH formulation is used here. It is described briefly in
this section; a more extensive description may be found in
an earlier publication [13].

Three projection operators are used, satisfying

Pm + Pi = P, P + Q = 1. (1)

Two sets of wave-like operators are defined [31] and ex-
panded in coupled-cluster normal-ordered exponential an-
sätze. Ω = 1 + χ is a standard wave operator in Pm,

ΩPm|Ψm〉 = {expS}Pm|Ψm〉 = |Ψm〉, (2)

where |Ψm〉 denotes an eigenstate of the Hamiltonian H
with the largest components in Pm, and R = 1 + ∆ is an
operator in P , satisfying

RP |Ψm〉 = {exp T }P |Ψm〉 = |Ψm〉. (3)

It should be noted that the last equation, and therefore all
equations derived from it, applies when operating on |Ψm〉
but not necessarily on |Ψi〉. This feature distinguishes R
from a bona fide wave operator. The cluster equation for
S in the (n) sector of the Fock space is [17]

Q[S(n), H0]Pm = Q(V QiΩ − χPmV QiΩ)(n)Pm, (4)

where Qi = 1−Pi = Q+Pm. No PiSPm elements appear
in the equation, so that Pi acts as a buffer between Pm and
Q, facilitating convergence and avoiding intruder states.
Equation (4) is valid provided QSPm � QTPm, which is
rather easy to achieve and is checked in the calculation.
After (4) is solved for QSPm, the equation for QTP is
solved,

(E − H0)QT (n)P =

Q(S(E − H0)Pm + (V R) − (χPmV R))(n)P. (5)

E is an arbitrary constant, chosen to facilitate conver-
gence. Tests have shown that E may be changed within
broad bounds (hundreds of Hartrees) with small effect
(1 meV or less) on calculated transition energies. The final
step is the construction of the intermediate Hamiltonian

HI = PHRP, (6)

which gives upon diagonalization the correlated energies
of |Ψm〉,

HIP |Ψm〉 = EmP |Ψm〉. (7)

The dimension of the HI matrix is that of P ; however,
only the eigenvalues corresponding to |Ψm〉 are required
to satisfy equation (7). The other eigenvalues, which cor-
respond to states |Ψi〉 with the largest components in Pi,
may include larger errors.

The Lamb shifts were estimated for each state by
evaluating the electron self-energy and vacuum polar-
ization using the approximation scheme of Indelicato
et al. [32]. The code described in references [32,33] was
adapted to our basis set expansion procedure by Vilkas
and Ishikawa [34]. All the necessary radial integrals were
evaluated analytically. In this scheme [33], the screening
of the self energy is estimated by integrating the charge
density of a spinor to a short distance from the origin,
typically 0.3 Compton wavelengths. The ratio of the inte-
gral computed with a spinor and that obtained from the
corresponding hydrogenic spinor is used to scale the self-
energy correction for a bare nuclear charge that has been
computed by Mohr [35]. Extensive relativistic configura-
tion interaction (RCI) wave functions were used. While the
IHFSCC excitation energies are expected to be more ac-
curate, the RCI functions reproduced them in most cases
within a few percent, so that the QED corrections should
be quite accurate. The RCI functions were also used to
obtain transition amplitudes to the Lr ground state.
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Table 1. Transition energies of Lu (cm−1).

Method Expt. IHFSCC +QED FSCC MCDF DFT
Ref. [24,25] present present [30] [27] [28]

Ionization potential
5d6s2 2D3/2 43 762 42 836 42 757 44 504 42 858

Excitation energies
5d6s2 2D5/2 1994 1945 1947 1975 1580 1536
6s26p 2DP1/2 4136 4080 4082 3828 4186 3862 3094

2P3/2 7476 7383 7390 7140 7462
6s27s 2S1/2 24 126 23 730 23 745
6s27p 2P1/2 29 430 30 457 30 459

2P3/2 30 489 30 930 30 934
6s26d 2D3/2 31 542 31 929 31 933

2D5/2 31 714 32 040 32 041
6s28s 2S1/2 34 610 33 978 33 969
6s25f 2F5/2 36 633 36 595 36 593

2F7/2 36 644 36 595 36 593
6s28p 2P1/2 36 809 36 005 35 980

2P3/2 37 131 36 119 36 094
6s29s 2S1/2 38 458 37 520 37 554
6s27d 2D3/2 36 769 37 028 37 005

2D5/2 36 953 37 106 37 090
6s29p 2P1/2 39 321 39 554

2P3/2 39 424 39 861
6s210s 2S1/2 40 282 39 318
6s211s 2S1/2 41 120 40 956

Electron affinities
6s26p5d3F2 2742 2706 2076 4258 2173
6s26p2 3P0 1290 1345 746
6s26p5d3D2 917 −336

3 Application

The Dirac-Coulomb-Breit Hamiltonian serves as the
framework for the calculations. The Dirac-Fock-Breit or-
bitals are first obtained, and correlation is included at
the coupled cluster singles-and-doubles (CCSD) level. The
closed-shell reference states for the Lu and Lr atoms are
the monocations (Xe)4f146s2 and (Rn)5f147s2, respec-
tively. The states of the neutral atoms are reached by
adding an electron to the reference determinants in a set
of valence orbitals, and the anions are obtained by adding
a second electron. Valence orbitals are added to the Pm

and Pi spaces until the resulting transition energies con-
verge. For Lu, Pm comprised 2s1p1d orbitals (the lowest
orbitals of each l not occupied in the reference closed-shell
determinant of Lu+), and the total P included 5s4p3d1f
orbitals. Somewhat larger model spaces were needed for
Lr, with 2s2p2d in Pm and 6s5p4d2f1g in P . Note that P
orbitals include those in Pm.

The universal basis set [36] is used, consisting of even
tempered Gaussian-type orbitals with exponents given by

ζn = γ × δ(n−1), γ = 106 111 395.371 615,

δ = 0.486 752 256 286. (8)

The basis set was increased until transition energies con-
verged. The basis used for both atoms includes 37 s func-
tions (n = 1–37), 31 p (n = 5–35), 26 d (n = 9–34), 21 f
(n = 13–33), 16 g (n = 17–32), 11 h (n = 21–31), and 6 i
orbitals (n = 25–30). The basis functions are left uncon-
tracted. Virtual atomic orbitals with energies higher than
200 Hartrees are discarded. The outer 43 electrons of the
atoms were correlated, leaving out the 28 inner electrons of
Lu and 60 inner electrons of Lr after the Dirac-Coulomb-
Breit stage.

4 Results and discussion

Since many transition energies of the lanthanide Lu are
known with high accuracy [24,25], their calculation pro-
vides a check on the accuracy of the method and the va-
lidity of predictions for the actinide Lr. The results for the
lighter element are presented and compared with exper-
iment and previous computations in Table 1. Very good
accuracy is obtained, with an average error of 423 cm−1

or 0.05 eV for the twenty excitation energies shown. The
QED corrections are small. The two electron affinities
measured recently by Davis and Thompson [25] are re-
produced within 7 meV, and an additional bound state
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Table 2. IHFSCC transition energies of Lr (cm−1).

State +QED

Ionization potential
7s27p 2P1/2 39 466 39 469

Excitation energies
6d7s2 2D3/2 1436 1408

2D5/2 5106 5082
7s27p 2P3/2 8413 8389
7s28s 2S1/2 20 118 20 131
7s28p 2P1/2 26 111 26 104

2P3/2 27 508 27 491
7s27d 2D3/2 28 118 28 096

2D5/2 28 385 28 380
7s29s 2S1/2 30 119 30 113
7s29p 2P1/2 32 295 32 290

2P3/2 32 840 32 841
7s26f 2F5/2 32 949 32 933

2F7/2 32 950 32 961
7s28d 2D3/2 33 473 33 458

2D5/2 33 635 33 626
7s210s 2S1/2 33 942

Electron affinities
7s27p2 3P0 3828 3838
7s27p6d 3F2 1161 1155

of the anion is predicted. DFT values are quite far from
experiment.

Table 2 shows the transition energies of lawrencium.
Note that the ground state (7s27p 2P1/2) is different
from that of lutetium (6s25d 2D3/2), as relativity pushes
the 7p orbital below the 6d. The QED corrections to
the transition energies are small, below 30 cm−1. This
small contribution reflects the fact that the 7s popula-
tion does not change for the transitions reported. Some
excitations involving holes in the 7s shell were calculated
by the RCI method; they exhibit larger QED effects, be-
tween 200–400 cm−1. The prime region for observing tran-
sitions in the planned GSI experiment is between 20 000
and 30000 cm−1. Our calculations predict several excita-
tions with large transition amplitudes in this region. The
strongest lines in the range of the experiment will cor-
respond to 7p → 8s at 20 100 cm−1 and 7p → 7d at
28 100 cm−1. The 7p → 9s transition at 30 100 cm−1 is
also dipole allowed, but the very different spatial distribu-
tion of the two orbitals is expected to make it weaker than
the other two. Other states in the same energy range come
from the 6d7s7p configuration. These were not calculated
here, and are expected to carry small transition ampli-
tudes because of the parity selection rule. Note that the
only previous accurate calculation of Lr excitation ener-
gies [27] treated just the lowest transition, 7s → 6d3/2,
which is in the infrared region and not subject to the
planned experiment.

Transition amplitudes cannot be obtained by the cur-
rent FSCC programs, and the RCI method was there-
fore used to compute them. The transition amplitudes

Table 3. RCI amplitudes of E1 transitions to the 7s27p1/2

ground state of Lr. The upper levels are designated by the dom-
inant electron configurations; other configurations may con-
tribute substantially.

λ (Å) Upper level J A (s−1)

2637.7 6d3/26d5/27s 1/2 3.6 × 108

2911.3 6d2
5/27s 3/2 2.2 × 108

2988.9 7s28d3/2 3/2 9.4 × 106

3151.8 6d2
3/27s 3/2 8.6 × 106

3319.5 7s29s 1/2 6.0 × 105

3559.2 7s27d3/2 3/2 3.5 × 107

3616.2 7s7p1/27p3/2 1/2 2.7 × 106

4306.4 7s7p2
1/2 1/2 1.4 × 107

4967.5 7s28s 1/2 2.7 × 107
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Fig. 1. Simulated E1 spectrum of Lr.

are shown in Table 3. Note that some excited states, in
particular those with a single 7s electron, have large con-
tributions from several configurations. Thus, the first two
states in Table 3 have RCI coefficients between 0.4–0.5 for
each of the 7s7p1/27p3/2, 6d3/26d5/27s, and 7s6d2

5/2 con-
figurations, and their assignment is somewhat arbitrary.
The simulated spectrum, obtained by convolution with a
Gaussian function with 20 Å full width at half maximum,
is shown in Figure 1. As noted above, the RCI method
gave excitation energies within a few hundred wavenum-
bers of FSCC values in most cases. Some states, such as
the 7s26d levels, showed much larger differences (several
thousand cm−1). The two states with the largest RCI tran-
sition amplitudes are outside the range of the planned
experiment. They are dominated by the 6d27s and 7s7p2

configurations, which cannot at present be included in the
P space. Consequently, these states do not appear in the
FSCC calculations, and their energies may have larger er-
rors than states obtained by FSCC. The transitions at
20 100 and 28 100 cm−1 carry the next highest amplitudes,
and are the most likely to be observed.
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5 Summary and conclusion

Excitation energies of Lr are calculated, in anticipation of
planned spectroscopy of this superheavy element. The in-
termediate Hamiltonian coupled cluster method applied,
as well as other aspects of the implementation (basis sets,
number of electrons correlated, structure of P spaces),
are tested by application to Lu, the lighter homologue
of Lr. Dipole allowed transitions falling in the 20 000–
30 000 cm−1 range and expected to have large ampli-
tude are 7s27p 2P1/2 → 7s28s 2S1/2 at 20 100 cm−1 and
7s27p 2P1/2 → 7s27d 2D3/2 at 28 100 cm−1. The aver-
age absolute error of calculated Lu transition energies is
423 cm−1; a conservative estimate of the error bound in
Lr is 700 cm−1.

Nobelium is another superheavy candidate for spectro-
scopic measurements in the near future. Similar applica-
tions to its spectrum (and to Yb, its lighter homologue)
are in progress.

This research was supported by the US-Israel Binational Sci-
ence Foundation and by the Israel Science Foundation.
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